bef-> NO.45

[国家集训队]单选错位

题目描述

gx和lc去参加noip初赛,其中有一种题型叫单项选择题,顾名思义,只有一个选项是正确答案。试卷上共有n道单选题,第i道单选题有ai个选项,这ai个选项编号是1,2,3,…,ai,每个选项成为正确答案的概率都是相等的。lc采取的策略是每道题目随机写上1-ai的某个数作为答案选项,他用不了多少时间就能期望做对\sum_{i=1}^n \frac{1}{a_i}∑i=1nai1道题目。gx则是认认真真地做完了这n道题目,可是等他做完的时候时间也所剩无几了,于是他匆忙地把答案抄到答题纸上,没想到抄错位了:第i道题目的答案抄到了答题纸上的第i+1道题目的位置上,特别地,第n道题目的答案抄到了第1道题目的位置上。现在gx已经走出考场没法改了,不过他还是想知道自己期望能做对几道题目,这样他就知道会不会被lc鄙视了。

我们假设gx没有做错任何题目,只是答案抄错位置了。

输入输出格式

输入格式:

n很大,为了避免读入耗时太多,输入文件只有5个整数参数n, A, B, C, a1,由上交的程序产生数列a。下面给出pascal/C/C++的读入语句和产生序列的语句(默认从标准输入读入):

1
2
3
4
5
6
7
8
9
10
11
12
13
// for pascal
readln(n,A,B,C,q[1]);
for i:=2 to n do
q[i] := (int64(q[i-1]) * A + B) mod 100000001;
for i:=1 to n do
q[i] := q[i] mod C + 1;

// for C/C++
scanf("%d%d%d%d%d",&n,&A,&B,&C,a+1);
for (int i=2;i<=n;i++)
a[i] = ((long long)a[i-1] * A + B) % 100000001;
for (int i=1;i<=n;i++)
a[i] = a[i] % C + 1;

选手可以通过以上的程序语句得到n和数列a(a的元素类型是32位整数),n和a的含义见题目描述。

输出格式:

输出一个实数,表示gx期望做对的题目个数,保留三位小数。

输入输出样例

输入样例#1:

1
3 2 0 4 1

输出样例#1:

1
1.167

说明

【样例说明】

1
2
3
4
5
6
7
正确答案   |   gx的答案    | 做对题目| 出现概率
{1,1,1} | {1,1,1} | 3 | 1/6
{1,2,1} | {1,1,2} | 1 | 1/6
{1,3,1} | {1,1,3} | 1 | 1/6
{2,1,1} | {1,2,1} | 1 | 1/6
{2,2,1} | {1,2,2} | 1 | 1/6
{2,3,1} | {1,2,3} | 0 | 1/6

a[] = {2,3,1}

共有6种情况,每种情况出现的概率是1/6,gx期望做对(3+1+1+1+1+0)/6 = 7/6题。(相比之下,lc随机就能期望做对11/6题)

对于30%的数据 n≤10, C≤10

对于80%的数据 n≤10000, C≤10

对于90%的数据 n≤500000, C≤100000000

对于100%的数据 2≤n≤10000000, 0≤A,B,C,a1≤100000000

题解

一道比较简单的期望题。

对于当前A_i个选项,假如

比它小,那么只有

个有效可能,每种可能均相等为

,期望做对也是

另一种同样分析。

所以第i道做对的期望是:

Code:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <iostream>
#define maxn 10000005
int n , a[maxn] , A , B , C;
double ans;
int main()
{
scanf("%d%d%d%d%d",&n,&A,&B,&C,a+1);
for (int i=2;i<=n;i++)
a[i] = ((long long)a[i-1] * A + B) % 100000001;
for (int i=1;i<=n;i++)
a[i] = a[i] % C + 1;
for(int i = 1 ; i < n ; ++i)
ans += (double)1 / std::max(a[i] , a[i+1]);
ans += (double)1 / std::max(a[n] , a[1]);
printf("%.3lf",ans);
}