[国家集训队]单选错位
题目描述
gx和lc去参加noip初赛,其中有一种题型叫单项选择题,顾名思义,只有一个选项是正确答案。试卷上共有n道单选题,第i道单选题有ai个选项,这ai个选项编号是1,2,3,…,ai,每个选项成为正确答案的概率都是相等的。lc采取的策略是每道题目随机写上1-ai的某个数作为答案选项,他用不了多少时间就能期望做对\sum_{i=1}^n \frac{1}{a_i}∑i=1nai1道题目。gx则是认认真真地做完了这n道题目,可是等他做完的时候时间也所剩无几了,于是他匆忙地把答案抄到答题纸上,没想到抄错位了:第i道题目的答案抄到了答题纸上的第i+1道题目的位置上,特别地,第n道题目的答案抄到了第1道题目的位置上。现在gx已经走出考场没法改了,不过他还是想知道自己期望能做对几道题目,这样他就知道会不会被lc鄙视了。
我们假设gx没有做错任何题目,只是答案抄错位置了。
输入输出格式
输入格式:
n很大,为了避免读入耗时太多,输入文件只有5个整数参数n, A, B, C, a1,由上交的程序产生数列a。下面给出pascal/C/C++的读入语句和产生序列的语句(默认从标准输入读入):
1 | // for pascal |
选手可以通过以上的程序语句得到n和数列a(a的元素类型是32位整数),n和a的含义见题目描述。
输出格式:
输出一个实数,表示gx期望做对的题目个数,保留三位小数。
输入输出样例
输入样例#1:
1 | 3 2 0 4 1 |
输出样例#1:
1 | 1.167 |
说明
【样例说明】
1 | 正确答案 | gx的答案 | 做对题目| 出现概率 |
a[] = {2,3,1}
共有6种情况,每种情况出现的概率是1/6,gx期望做对(3+1+1+1+1+0)/6 = 7/6题。(相比之下,lc随机就能期望做对11/6题)
对于30%的数据 n≤10, C≤10
对于80%的数据 n≤10000, C≤10
对于90%的数据 n≤500000, C≤100000000
对于100%的数据 2≤n≤10000000, 0≤A,B,C,a1≤100000000
题解
一道比较简单的期望题。
对于当前A_i个选项,假如
比它小,那么只有
个有效可能,每种可能均相等为
,期望做对也是
另一种同样分析。
所以第i道做对的期望是:
Code:
1 |
|