今天虽然放假,不过考虑到NOIp还有6天,还是在家好好学学OI吧。(NOIp怎么也得拿个省一吧)
P1073 最优贸易
题目描述
CC国有nn个大城市和mm 条道路,每条道路连接这 nn个城市中的某两个城市。任意两个城市之间最多只有一条道路直接相连。这 mm 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道路在统计条数时也计为 11条。
CC国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价格不一定相同。但是,同一种商品在同一个城市的买入价和卖出价始终是相同的。
商人阿龙来到 CC 国旅游。当他得知同一种商品在不同城市的价格可能会不同这一信息之后,便决定在旅游的同时,利用商品在不同城市中的差价赚回一点旅费。设 CC 国 n 个城市的标号从 1~ n1 n,阿龙决定从 11号城市出发,并最终在 nn 号城市结束自己的旅行。在旅游的过程中,任何城市可以重复经过多次,但不要求经过所有 nn 个城市。阿龙通过这样的贸易方式赚取旅费:他会选择一个经过的城市买入他最喜欢的商品――水晶球,并在之后经过的另一个城市卖出这个水晶球,用赚取的差价当做旅费。由于阿龙主要是来 CC 国旅游,他决定这个贸易只进行最多一次,当然,在赚不到差价的情况下他就无需进行贸易。
假设 CC国有 55个大城市,城市的编号和道路连接情况如下图,单向箭头表示这条道路为单向通行,双向箭头表示这条道路为双向通行。
假设 1~n1 n 号城市的水晶球价格分别为 4,3,5,6,14,3,5,6,1。
阿龙可以选择如下一条线路:11->22->33->55,并在 22号城市以33 的价格买入水晶球,在 33号城市以55的价格卖出水晶球,赚取的旅费数为 2。
阿龙也可以选择如下一条线路11->44->55->44->55,并在第11次到达55 号城市时以 11的价格买入水晶球,在第 22 次到达44 号城市时以66 的价格卖出水晶球,赚取的旅费数为55。
现在给出 nn个城市的水晶球价格,mm 条道路的信息(每条道路所连接的两个城市的编号以及该条道路的通行情况)。请你告诉阿龙,他最多能赚取多少旅费。
输入输出格式
输入格式:
第一行包含 22 个正整数nn和 mm,中间用一个空格隔开,分别表示城市的数目和道路的数目。
第二行 n 个正整数,每两个整数之间用一个空格隔开,按标号顺序分别表示这 n 个城市的商品价格。
接下来 mm 行,每行有33个正整数x,y,zx,y,z,每两个整数之间用一个空格隔开。如果 z=1z=1,表示这条道路是城市xx到城市yy之间的单向道路;如果z=2z=2,表示这条道路为城市 xx和城市yy之间的双向道路。
输出格式:
一 个整数,表示最多能赚取的旅费。如果没有进行贸易,则输出 00。
输入输出样例
输入样例#1:
1 | 5 5 |
输出样例#1:
1 | 5 |
说明
【数据范围】
输入数据保证 11 号城市可以到达nn号城市。
对于 10%的数据,1≤n≤61≤n≤6。
对于 30%的数据,1≤n≤1001≤n≤100。
对于 50%的数据,不存在一条旅游路线,可以从一个城市出发,再回到这个城市。
对于 100%的数据,1≤n≤1000001≤n≤100000,1≤m≤5000001≤m≤500000,1≤x1≤x,y≤ny≤n,1≤z≤21≤z≤2,1≤1≤各城市
水晶球价格≤100≤100。
NOIP 2009 提高组 第三题
题解
一道挺不错的题,现在D1T2难度正合适。
主要是用最短路中松弛的思想来找到dp顺序并优化dp。
最初在考场上没看到要到点n结果爆零实际上很接近正解。
话说这道题还有分层图的做法不如一会看看,今天上午准备学一下分层图。
设
表示最大差值,然后记录能到达当前点的最小值,和当前点做差的值与前面得到的差值的最大值取最大即可。
Code:
1 |
|
P4568 [JLOI2011]飞行路线
题目描述
Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司。该航空公司一共在nn个城市设有业务,设这些城市分别标记为00到n-1n−1,一共有mm种航线,每种航线连接两个城市,并且航线有一定的价格。
Alice和Bob现在要从一个城市沿着航线到达另一个城市,途中可以进行转机。航空公司对他们这次旅行也推出优惠,他们可以免费在最多kk种航线上搭乘飞机。那么Alice和Bob这次出行最少花费多少?
输入输出格式
输入格式:
数据的第一行有三个整数,n,m,kn,m,k,分别表示城市数,航线数和免费乘坐次数。
第二行有两个整数,s,ts,t,分别表示他们出行的起点城市编号和终点城市编号。
接下来有m行,每行三个整数,a,b,ca,b,c,表示存在一种航线,能从城市aa到达城市bb,或从城市bb到达城市aa,价格为cc。
输出格式:
只有一行,包含一个整数,为最少花费。
输入输出样例
输入样例#1:
1 | 5 6 1 |
输出样例#1:
1 | 8 |
说明
对于100%的数据,
题解
听说这道题是高端的分层图模型,然后我设了个dp状态随便转移就AC了。。
其实不是一次AC,因为我SPFA被卡了一个点。。
90分SPFA:
1 |
|
AC Code:
1 |
|